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Abstract. The Department of Energy has a wide range of large-scale,
parallel scientific applications running on cutting-edge high-performance
computing systems to support its mission and tackle critical science chal-
lenges. A recent trend in these high-performance computing systems is
to add commodity accelerators, such as Nvidia GPUs and Intel Xeon
Phi coprocessors, into computer nodes so we can achieve increased per-
formance without exceeding the limited power budget. However, it is
well-known in the high-performance computing community that porting
existing applications to accelerators is a difficult task given the numerous
set of unique hardware features and the general complexity of software.
In this paper, we share our experiences of using the OpenMP Accel-
erator Model to port two stencil applications to exploit Nvidia GPUs.
Introduced as part of the OpenMP 4.0 specification, the OpenMP accel-
erator model provides a set of directives for users to specify semantics
related to accelerators so that compilers and runtime systems can au-
tomatically handle repetitive and error-prone accelerator programming
tasks, including code transformations, work scheduling, data manage-
ment, reduction, and so on. Using a prototype compiler implementation
based on the ROSE source-to-source compiler framework, we report the
problems we encountered during the porting process, our solutions, and
the obtained performance. Productivity is also evaluated. Our experience
shows that the existing OpenMP Accelerator Model can effectively help
programmers leverage accelerators. However, complex data types and
non-canonical control structures can pose challenges for programmers to
productively apply accelerator directives.

1 Introduction

The Department of Energy (DOE) has a wide range of large-scale, parallel sci-
entific applications to support its mission and tackle critical research and de-
velopment challenges in multiple science disciplines. Many of these scientific
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applications have a lifespan of multiple decades so it is essential to port them
to current mainstream high-performance computing (HPC) systems deployed in
DOE in a timely fashion. A recent trend in the HPC systems is to add com-
modity accelerators, such as Nvidia GPUs and Intel Xeon Phi coprocessors, into
computer nodes so we can achieve increased performance within a limited power
budget. However, it is well-known in the HPC community that porting existing
applications to accelerators is a difficult task given the numerous unique set of
hardware features of accelerators and the complexity of software.

Although low-level programming models, such as CUDA [2] and OpenCL [10],
can often help deliver competitive performance for certain applications, they are
not productive porting solutions for large-scale parallel applications due to the
extreme and comprehensive changes required in the original source code. On
the other hand, high-level programming models such as OpenMP 4.0 [14] and
OpenACC [4] provide language annotations in the form of directives and clauses
for users to incrementally specify the semantics for porting to an accelerator.
Compilers and runtime systems then automatically take care of repetitive and
error-prone code transformations, thread scheduling, data management, and so
on. Therefore, it is more productive for users to use high-level directive-based
programming models to test the feasibility and profitability of using accelerators.

The OpenMP Accelerator Model, introduced as part of the OpenMP 4.0
specification, is a representative high-level directive-based programming model
aimed to simplify the programming for accelerators. In a previous study [12], we
created a prototype compiler for the OpenMP Accelerator Model and obtained
an early assessment. We extend our work by applying the model to port two
non-trivial DOE scientific applications: lattice-Boltzmann method and Com-
pressible Navies-Stokes equation. Both applications conduct a stencil compu-
tation, an important category of scientific computing done in DOE facilities.
However, they have very different stencil sizes so they represent a spectrum of
stencil applications. However, they represent a spectrum of stencil applications
by their difference in stencil sizes. Our goal is to discover problems developers
may face when using the OpenMP Accelerator Model to port real applications.
We also share our solutions to the problems, including suggestions to improve
the programming model itself. Our contributions include: 1) providing the first
study using the OpenMP Accelerator Model in OpenMP 4.0 to port non-trivial
scientific applications, 2) illustrating the obstacles for porting real applications
and possible solutions and workarounds, and 3) suggesting improvements, in-
cluding new language features, of the OpenMP Accelerator Model to increase
expressiveness and performance for accelerators.

The remainder of this paper is organized as follows. Section 2 gives an
overview of the accelerator support in the OpenMP 4.0 specification. Section 3
describes the two applications. Porting experiences and performance results are
given in Section 4. Section 5 summarizes related work and Section 6 presents
the conclusion and future work.
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2 OpenMP 4.0’s Accelerator Support

OpenMP is a representative high-level directive-based programming model orig-
inally designed to address shared-memory programming. Starting from OpenMP
4.0, it has a set of language directives and runtime routines aimed at simplifying
the programming for accelerators. Collectively, the accelerator support is often
called the OpenMP Accelerator Model. The OpenMP accelerator model assumes
that a computation node has a host device connected with one or multiple target
devices. A target device, which can be any logical execution engine defined by
an implementation, has threads that behave almost the same as threads on the
host device. The OpenMP memory model is extended so that the code region
has its own data environment. A device appears to have an independent memory,
although it is allowed to share memory among devices.

The execution model is host-centric: a host device “offloads” data and code
regions to accelerators for execution. In particular, the target construct is intro-
duced for specifying a computation and the associated data to be offloaded to a
device. Initially, only a single thread starts on a device to run an implicit task
region. This single thread can fork more threads later when it encounters par-
allel constructs. Data-mapping attributes, specified using the map clause, define
how variables are handled for the device data environments. Data mapping often
involves data movement as host and device are commonly in different memory
spaces in modern accelerator architectures. To avoid repetitive creation and can-
cellation of device data environments, the target data directive defines a device
data region, in which multiple target regions can share the same device data.

Accelerators are often massively parallel architecture devices that support
many concurrent threads with a hierarchical organization. OpenMP 4.0 pro-
vides the teams and distribute constructs to manage a two-level thread hierar-
chy. teams creates a league of thread teams, and the master thread of each team
executes the region. distribute is closely nested in a teams region to share work
among master threads of teams. Other features in the OpenMP accelerator
model include a target update directive to make specified items in the device
data environment consistent with their original list items, a target declare di-
rective to specify the variables or functions to be mapped to a device, some
combined constructs to simplify the programming, and an environment variable
(OMP DEFAULT DEVICE) to indicate the default device number, and a set of
runtime library routines to set and detect information related to accelerators.

3 Applications

Stencil computations are used in many large DOE scientific applications to solve
partial differential equations on structured grids. In this paper, we chose two
stencil applications, one using the lattice-Boltzmann method (LBM) and the other
solving the compressible Navier-Stokes equation (CNS), to represent non-trivial
scientific applications. The chosen LBM and CNS algorithms have very different
stencil sizes (0-point vs. 25-point) leading to different computational character-
istics. The LBM method operates in a streaming mode; memory is read once to
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perform the computation in the 0-point grid site. In the CNS method, mem-
ory from a grid site is repeatedly used in all the stencils that include that grid
site. Hence, effective caching is extremely important. With effective caching, the
arithmetic intensity (FLOPS per unit byte) can be quite high. The performance
of the LBM algorithm is often limited by bandwidth whereas the performance
of the CNS algorithm is often limited by arithmetic resources. These different
characteristics can lead to different implementation strategies when porting the
applications to a GPU device. We list a high level comparison between two
applications in Table 1.

Table 1: Comparison between LBM and CNS applications
Language AMR library Stencil components lines in codes

LBM C++ Chombo 0-point 19 4670 (12879 w/ Chombo code)

CNS Fortran90 BoxLib
1D: 9-point

11 1242 (25967 w/ BoxLib code)
3D: 25-point

In the LBM, hydrodynamics are described by a discrete kinetic equation for a
single-particle distribution function [5].

fi(j + ei∆t, t+∆t) = f̂i(j, t)︸ ︷︷ ︸
Streaming

= fi(j, t) + Lik

(
fk(j, t)− feq

k (j, t)
)︸ ︷︷ ︸

Collision

. (1)

The chosen LBM application uses Chombo [6], a parallel adaptive mesh refine-
ment (AMR) library used to solve partial differential equations. The domain
size selected in the experiment is a 643 Cartesian grid structure partitioned into
boxes, each of size 323. A total of 8 boxes cover the problem domain and 8000
time steps are performed in a single experiment. Fig. 1 shows the pseudo code
for the LBM computation. In the experimental setup, a loop in the application
iterates over 8 boxes and performs computations to update the grid cells in each
box (represented in line 8). Parallelization can be applied to the loop over boxes
(line 8) or loops over grid cells (line 11 and line 16). Multi-level parallelization
is feasible only if it is supported in the implementation.

The CNS algorithm is based on finite-difference methods and the equations
are:

∂ρ

∂t
+∇ · (ρu) = 0, (2)

∂ρu

∂t
+∇ · (ρuu) +∇p = ∇ · τ , (3)

∂ρE

∂t
+∇ · [(ρE + p)u] = ∇ · (λ∇T ) +∇ · (τ · u), (4)

where ρ is the density, u is the velocity, p is the pressure, E is the specific energy
density (kinetic energy plus internal energy), τ is the viscous stress tensor, λ is
the thermal conductivity, and T is the temperature. The problem domain in
CNS is represented by BoxLib [1], an AMR library very similar to Chombo. The
domain size of the CNS experiment is 643 and partitioned into “Fabs” (Fortran
array boxes), each of size 323. 50 time steps are performed and 5 output files are
generated during the computation. An outer loop iterates over all available Fabs
in the “multi-Fab” data structure (shown in line 5 in Fig. 2). Similar to the LBM,
multi-level parallelization is applicable if it is supported in the implementation.



Experiences of OpenMP Accelerator for DOE Stencil Applications 5

1 fi(cells , 19, boxes) = initial data;
2 fiUpdate(cells , 19, boxes) = 0;

3 U(grid , 4, boxes );

4 Macroscopic(U, fi);

5 for (int iTS = 0; iTS != nTimeStep; ++iTS)

6 {

7 int iBox;

8 for (every box)
9 {

10 { // Advance function

11 for (every cell)
12 Collision(fi, U);

13 Exchange(fi);

14 BC(fi);

15 Stream(fiUpdate , fi);

16 for (every cell)
17 Macroscopic(U, fiUpdate );

18 swap(fi , fiUpdate );

19 }

20 }

21 }

Fig. 1: LBM algorithm pseudo-code

1 init_data(U, dx, prob_lo , prob_hi)

2 for (int iTS = 0; iTS != nTimeStep; ++iTS)

3 {

4 int iFab;

5 for (every Fab)
6 { // Advance function

7 for (1/3 timestep)
8 { // Advance 1/3 of timestep in each iter.

9 for (every grid cell)
10 ctoprim(Unew , Q);

11 for (every grid cell)
12 diffterm(Q, D);

13 for (every grid cell)
14 hypterm(Q, F);

15 }

16 }

17 }

Fig. 2: CNS application pseudo-code

4 Porting to GPUs

Our porting process starts with obtaining baseline performance of OpenMP ver-
sions of the applications. We incrementally add additional accelerator directives
and clauses to show the programming effort and performance impact. In partic-
ular, we experiment with directives and clauses for data reuse, loop collapsing,
loop scheduling and hierarchical thread mapping.

The hardware platform has 132 GB memory, two 8-core Intel E5-2670 CPUs,
and two Nvidia K20x GPUs. We use a prototype implementation of the OpenMP
Accelerator Model, HOMP (Heterogeneous OpenMP) [12], which is built on the
ROSE source-to-source compiler infrastructure [15] developed at Lawrence Liv-
ermore National Laboratory. The built-in OpenMP implementation in ROSE
supports OpenMP 3.0 directives for C, C++ and a subset of Fortran. Leverag-
ing ROSE’s flexibility to experiment with new language extensions, HOMP adds
the OpenMP accelerator support [12], including parsing and code transforma-
tions for target, target data, map and so on. HOMP generates CUDA code for the
growing demands in GPU programming. The original OpenMP runtime library
(referred to as XOMP) for ROSE has been extended to support thread config-
uration, loop scheduling, data management, reduction and many other required
operations on GPUs. We use the GNU Compiler Collection (gcc-4.4.6), Nvidia
6.0 SDK, nvcc compiler, and the Nvidia Visual Profiler [3] in this study.

4.1 Baseline Performance on CPU & GPU

The default setup in the LBM application has OpenMP directives inserted into the
loop for boxes (line 8 in Fig. 1). The OMP NUM THREADS environment variable
is set to 8 to assign at most 8 OpenMP threads to update the 8 boxes in the loop.
We assign at most 8 OpenMP threads to update the 8 boxes in the loop. Each
OpenMP thread will then update 323 cells inside a box, a strategy that works
well for boxes of this size [13]. The OpenMP parallel region terminates at the end
of the loop to form an implicit synchronous barrier between time steps. Fig. 3
shows the CPU’s serial and parallel performance. The parallel execution with 8
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OpenMP threads delivers a 6.76× speedup compared to the serial execution on
the testing system.

The CNS application by default has OpenMP directives at the loops for grid
cells (line 9, 11, and 13 in Fig. 2). These loops are 3-level nested loops that
iterate through the cubical structure in a Fab. The whole application consists of
14 such OpenMP parallel loops. In the configured testing case, loop iterations
in the outermost loop are evenly distributed into 8 OpenMP threads for 8
boxes. Fig. 4 shows the comparison between serial and parallel execution using 8
threads. The parallel execution delivers a 5.42× speedup on the testing machine.
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Fig. 3: LBM CPU baseline performance
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Fig. 4: CNS CPU baseline performance

Before the porting, we discovered a few obstacles to adding OpenMP ac-
celerator directives. We had to modify a subset of code from both applications
to make the porting feasible. For example, the current HOMP only supports
C/C++ input code to generate CUDA code for the GPU. We used a Fortran-
to-C translator implemented in ROSE to translate the functions in the CNS into
C language versions for the porting. In the LBM application, several variables
used in the target loops were not mappable by the OpenMP 4.0 specification
because they are part of other C++ class objects. We copied those variables to
temporary variables and mapped the temporary variables as a workaround. The
baseline implementations on the GPU simply reuse the OpenMP parallel direc-
tives without any optimization involved. Minimal OMP target and OMP map
directives are used to identify the target region and data to be mapped onto the
device.

For the LBM application, the location of OpenMP directives in the CPU im-
plementation is not an ideal start location for the GPU implementation since it
contains multiple kernels in the loop body. Using an incremental approach, we
ported individual kernels first and moved the OpenMP directives to the loca-
tions of loops to the grid cells inside Collision, Macroscopic and Stream func-
tions (shown at line 11, 15 and 16 in Fig. 1). These three functions consume the
majority of execution time (47% in Collision, 40% in Stream and 7% in Macro-
scopic) on the parallel CPU execution. The GPU baseline implementation for
the CNS application has OpenMP directives inserted into 1 loop in the ctoprim
function, 3 loops in the hypterm function, and 7 loops in the diffterm function.
Those are the same locations that have OpenMP directives in the parallel CPU
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implementation. Diffterm function takes the greatest portion (34%) portion of
total execution in the CNS application. Hypterm and ctoprim take 24% and 13%,
respectively.

The baseline GPU performance in both applications were not competitive
compared to their corresponding CPU version performance (shown in Fig. 5 and
Fig. 6). After inspection with the Nvidia Visual Profiler [3], we found that the
baseline GPU implementations have extremely low achieved GPU occupancy
(< 2%). The baseline GPU implementations have extremely low achieved GPU
occupancy (< 2%). This is due to the nested loops, identified by the OpenMP
directives, which have only small loop iteration sizes in their outermost loop.
The translated CUDA codes exploit at most 40 GPU threads to perform the
computation and result in low parallelism and performance. The next step in
porting was to improve the GPU utilization by increasing the parallelism.
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Fig. 5: LBM performance on GPU
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Fig. 6: CNS performance on GPU

4.2 Increasing Parallelism

Achieving high parallelism is the key for a GPU device to get high computing
performance. In addition to optimizing applications for high parallelism, the
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porting process needs to take into account that the maximum parallelism in the
real execution is subject to certain CUDA limitations. These are the limitations
for K20X GPU used in this paper:

– At most 1024 threads in a thread block.

– At most 64 warps (32 threads/warp) in a SMX.

– A thread can have up to a 63 register usage.

– Each SM has up to 48 KB shared memory shared by multiple thread blocks.

We describe two feasible approaches to increasing parallelism for the chosen
applications.

The first approach is loop collapsing. Loop collapsing is a transformation that
converts multiple perfectly nested loops into a single loop. Compared to the orig-
inal outermost loop, the collapsed loop has a larger iteration size with potential
to expose higher parallelism. We apply the directive #pragma omp for collapse (n)
to perform loop collapsing. However, loop structure in the LBM application has
statements between the nested loops and does not form a perfectly nested loop.
Collapsing non-perfectly nested loops is not allowed by the OpenMP specifica-
tion. After reviewing the nested loop structure, we manually moved statements
between loops in LBM application into the innermost loop body since this change
causes no side effect and can form a perfectly nested loop. After collapsing, we
could exploit more GPU threads to perform parallel execution on the collapsed
loop. Therefore, more GPU threads could be assigned to perform parallel execu-
tion on the collapsed loop. The XOMP runtime incorporates the CUDA runtime
to maximize the utilization of the GPU threads. Compared with the baseline
GPU implementations, there are about 5× and 10× speedups delivered for the
LBM and CNS applications respectively (shown in Fig. 5 and Fig. 6).

The second option to increase parallelism is to use the multi-dimensional
thread structure supported in CUDA. In the LBM application, we can seamlessly
allocate 32× 32 threads to a thread block and have 32 thread blocks mapped to
the outermost loop. This can achieve 100% occupancy in the execution if only 32
registers are given to each GPU thread. But there are only two concurrent thread
blocks in the setup due to the limitation in the allowed warp number. In the CNS

application, we can have the same allocation if ghost cells are not involved in
the computation. Otherwise, the loop iteration size becomes 40 (32 and 4 ghost
cells on both sides) in the three-level nested loop. To fulfill the CUDA limitation
discussed earlier, we allocate only 40 threads in a thread block and have multiple
thread blocks mapped to the loop iteration space. 16 concurrent thread block
are allowed in executions, and it is also the maximum allowed number in this
GPU model. This configuration has lower theoretical occupancy (50%) and the
computation is inefficient due to the usage of partial-warp. The performance is
reported in histograms marked with multi-dim threadblock in Fig. 5 and Fig. 6.
Compared with the collapsing variants, a 1.5× speedup is achieved in the LBM

application but a marginal difference is shown for the CNS application.
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4.3 Loop Scheduling

OpenMP supports multiple loop scheduling policies, including static, dynamic,
guided, auto, and runtime. For regular loops running on CPUs, statically and
evenly dividing loop iterations among threads using a schedule(static) clause (re-
ferred to as static-even schedule in this paper) often leads to the best performance
with minimal scheduling overhead. On the GPU, we need to perform coalesced
memory access for high performance. The static-even schedule will have one
GPU thread accessing multiple successive words in memory and lead to multiple
memory transactions. A round-robin scheduling using schedule(static,1) will ful-
fill the need to perform coalesced memory access on the GPU device. We apply
the round-robin schedule and compare only the kernel execution times in the CNS
application. Round-robin scheduling delivers the highest (76%) improvement in
one kernel in the hypterm function and an average of 26.4% improvement for
all kernels. Performance reports show modest improvement for total execution
time in the CNS application (1%) and a larger improvement in the the LBM appli-
cation (2.8×). The performance analysis reports high overhead due to memory
movement between the host and device memories.

4.4 Exploiting Memory Hierarchy

Nvidia GPUs provide multiple specialized memories, including on-chip software
controllable cache shared within a thread block (referred to as shared memory)
and constant memory accessible by all threads for read-only global data. The
current OpenMP 4.0 lacks support to exploit the specialized memories. We pro-
pose to extend the OpenMP Accelerator Model to have a cache clause to allow
users to hint such opportunities. The clause has a form of cache (var list), in
which each variable listed can be further prepended by an optional const mod-
ifier. For example cache (array1[0:10], const array2[5:10]) tells the compiler that
there are two arrays which should be cached in the memory hierarchy of the
accelerator. One of the arrays is a read-only subarray. Similar to the map clause,
the cache clause can only be used with target or target data directives. Variables
shown in the cache clause must also show up in the map clause affecting the same
code region. With this clause, compilers translate the code to exploit either the
shared memory or the constant memory of GPUs.

After evaluating the two applications, the LBM gained more benefits from the
constant memory than the shared memory. We can store many constant coeffi-
cients, stride distances, and an array storing discrete velocity directions and an
array storing weights in the constant memory space. Fig. 7 extracts the compar-
ison (execution time includes memory copying overhead) with only two kernels
in the LBM application to demonstrate the performance with constant memory
usage. A 1.32× speedup is achieved for the overall execution time from the imple-
mentation with constant memory. Higher speedups, from 1.74× to 2.44×, were
observed in the execution times for these three functions individually.

On the other hand, the CNS has relatively low constant data referenced by
multiple functions. But the CNS application uses a 25-point stencil in the 3D
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computation. Stencil data can therefore be stored in the shared memory space
to gain the benefit of the fast memory. We used shared memory for six kernels
(3 in Hypterm and 3 in Diffterm) in the GPU implementation for the CNS ap-
plication. Table 2 shows the details of the required shared memory size, thread
assignment and the achievable highest GPU occupancy. This implementation
doesn’t deliver higher performance compared to our earlier implementation with
the best performance (shown in Fig. 8) due to a much lower GPU occupancy.
To increase the active thread number in each thread block, loop tiling can be
performed in the loop for the second dimension in the 3D nested loop. We can
exploit more GPU threads after loop tiling but it also proportionally increases
the required shared memory size for each thread block. Table 2 also shows the
changes in GPU occupancy by tiling both kernels with different tiled sizes. The
GPU occupancy will be limited by the allowed 48KB shared memory size. We
conclude that exploiting shared memory in our implementation for the CNS ap-
plication does not improve performance. It would require other optimizations to
achieve efficient shared memory usage.

Table 2: Shared memory usage and GPU occupancy
Shared memory report

Kernel size/block (byte) threads/ block Occupancy
Hypterm original 1920 40 50%
Tiled 2 iterations 3840 80 56%
Tiled 3 iterations 5760 120 50%
Tiled 4 iterations 7680 160 47%
Diffterm original 3520 40 41%
Tiled 2 iterations 7040 80 28%
Tiled 3 iterations 10620 120 25%
Tiled 4 iterations 14080 160 23%

0.00E+00	  

5.00E+04	  

1.00E+05	  

1.50E+05	  

2.00E+05	  

2.50E+05	  

3.00E+05	  

3.50E+05	  

4.00E+05	  

2-‐level	  collapsing,RR	  scheduling	   w/	  constant	  mem	  

Kernel	  execuCon	  Cme	  (ms)	  

Cme	  for	  streaming	  

Cme	  for	  macroscopic	  

Cme	  for	  collision	  

Fig. 7: LBM with constant memory

0.000	  

0.050	  

0.100	  

0.150	  

0.200	  

0.250	  

0.300	  

0.350	  

0.400	  

0.450	  

0.500	  

di+erm_#1	  di+erm_#2	  di+erm_#3	  hypterm_#1	  hypterm_#2	  hypterm_#3	  
GPU	  Kernel	  

Execu?on	  ?me	  (ms)	  with	  shared	  memory	  usage	  

2-‐level	  collapsing,RR	  scheduling	  

W/	  shared	  mem	  	  

Fig. 8: CNS with shared memory

4.5 Reducing Memory Movement Between Host And Device

We observed several variables and arrays are copied repetitively to the GPU’s
memory in different kernels. Using target data directives with map clauses can
usually reduce repetitive memory allocations and transferring. However, we found
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that this is not a trivial task for the two chosen applications due to language
restrictions. OpenMP 4.0 defines a set of restrictions for variables listed in the
map clause, such as 1) data must have a complete type for C/C++ , 2) a variable
that is part of another variable (e.g. a field of a struct) is not allowed unless it is
an array element or array section, 3) C++ class types mapped must not contain
static data or virtual members, and 4) pointer types are allowed but the memory
block to which the pointer refers to is not mapped. Chombo (used in the LBM

application) and BoxLib (used in the CNS application) share a data structure
called Fortran array box (Fab). Fab is a structure of arrays that can store multi-
ple components and it provides a high-level data abstraction. Information, such
as loop bounds, stencil size, and a data pointer to the component array, is pack-
aged inside the Fab. Members in Fab contain primitive arrays, scalar variables,
and some static data. An ideal strategy in the porting process is to copy the
entire Fab structure to the GPU’s memory space. However, the Fab structure is
not mappable according to OpenMP 4.0. A workaround task is to extract and
store all the members of Fab in primitive arrays. Then the temporary arrays can
be mapped and copied to the GPU memory. This will involve a significant code
modification in the porting process.

4.6 Manual Tuning for GPU Performance

We provide manual implementations for both applications to evaluate the achiev-
able performance through manual performance tuning. We manually implement
the chosen applications with the CUDA language and consider the possibilities
to involve OpenMP 4.0 standards and compiler transformations to automate the
process. The manual implementations serve as a reference to study the transfor-
mation obstacles in the design of the OpenMP accelerator model. Several manual
optimizations require good understanding in the application design to perform
code modifications and they are not implemented as automatic transformations
in this study.

The manually-tuned GPU implementation for the LBM application signifi-
cantly simplifies the Fab structure, restructures the code, and consolidates all
the memory copying. Other optimizations include hand-tuned kernels (includ-
ing BoxLib’s exchange function), exploiting constant memory, and several code
modifications specifically for the GPU implementation. A simplified Fab struc-
ture on GPU code is designed to store only the essential data members in the
CPU’s Fab structure. Data is allocated and copied to GPU memory once and
reused by all the kernels listed in the pseudo code in Fig. 1. This optimized
implementation delivers the best performance between the CPU’s and GPU’s
implementations (shown in Fig. 5).

The manual tuning processes for the CNS application minimize memory copy-
ing between the host and device, exploit efficient usage of shared memory, and
maximize GPU occupancy. A 43 thread block is chosen based on the ghost cell
size in the computation to avoid the partial warp usage. The code was modified
to have only minimal memory transfers between host memory and device mem-
ory. All initialized data stored in the Fab data structure is copied to the device
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memory before the computation. There are infrequent data movements which
send only a subset of computed data back to the host memory for boundary ex-
change performed by the BoxLib library and visualization dumps. The manual
code delivers the best GPU performance with about 6× speedup compared to
the best implementation with the OpenMP accelerator model (shown in Fig. 6).
However, the delivered performance is not superior to the performance on the
CPU due to overheads in allocating, copying and freeing memory on the GPU.
Eliminating that overhead for the CNS application, the GPU execution time for
the three kernels is at a comparable level to the CPU execution time.

4.7 Productivity

We briefly discuss the productivity benefit by using the OpenMP accelerator
model. We choose the line number as the metric to evaluate the gain in pro-
ductivity. Table 3 lists the essential information for the study. The number of
accelerator directives inserted, lines in source code being ported, lines in the
transformed code on the CPU (host code), and the line of the generated CUDA
code on the GPU (device code), are collected in the table. Besides the code
generated by the HOMP compiler, each runtime function packs a series of low-
level CUDA function calls and additional codes to perform the designated task.
Without the runtime support, manual implementation needs to perform the same
series of CUDA function calls repetitively. For both transformed host and device
codes, table 3 lists two counts with and without including the line numbers pack-
aged by the runtime functions. The count with lines performed in the runtime
functions provides an estimation for the code size in a manual implementation.
As shown in the table, using a few lines of directives can essentially save the
efforts of writing hundreds or even thousands of lines of generated code. Accel-
erator directives supported by the OpenMP 4.0 can greatly simplify the porting
process and improve productivity. On the other hand, programming using the
OpenMP accelerator model does require additional domain knowledge, analysis,
or optimization to achieve high performance on the target platform. Occasional
manual code changes are needed also to workaround some language restrictions
or expose more parallelism. However, the efforts of learning low-level CUDA or
OpenCL would be more significant.

Table 3: Productivity study using lines of code (LOC)

Functions Source LOC Directives
Host LOC Device LOC Ratio (LOC / directives)

A B A B A B
LB collision 45 2 57 464 48 58 52.5 261.0
LB macroscopic 46 2 52 421 45 55 48.5 238.0
LB stream 21 2 53 460 35 45 44.0 252.5
CNS ctoprim 14 2 27 205 30 40 28.5 122.5
CNS hypterm 57 6 81 793 123 153 34.0 157.7
CNS diffterm 82 14 335 2647 206 276 38.6 208.8

A: Lines of code without counting in runtime;
B: Line sof code with counting in runtime
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5 Related Work

Many previous studies [17,8,11,9] have evaluated the performance and produc-
tivity of OpenACC using a range of kernels or applications. For example, Wienke
et al. [17] presented their experiences with OpenACC using two real-world ap-
plications. OpenACC helped them reach 80% of the best-effort OpenCL version
in a moderately complex simulation kernel. They reported that the inability to
exploit local memory of the GPUs could contribute to the loss of performance of
other complex OpenACC applications. Herdman et al. [8] used a hydrodynamics
mini-application to compare OpenACC, OpenCL and CUDA. They found that
OpenACC was extremely viable but their OpenCL and CUDA versions were not
optimized. Hoshino et al. [9] used both kernels and a real-world computational
fluid dynamics applications to compare CUDA and OpenACC. They reported
that some complex Fortran data types such as arrays of derived types and de-
rived types with variable-length arrays are not supported by OpenACC, but
extensively used in the code.

The application experience of using the OpenMP accelerator support is rare
due to the lack of compiler support. Dietrich et al. [7] presented an approach to
measure the performance of applications utilizing OpenMP offloadings. Their fo-
cus is at performance analysis on the Intel Xeon Phi coprocessor. Silva et al. [18]
compared OpenACC and OpenMP for accelerator computing. A set of parallel
programming patterns, not real applications, were used to compare language
features. No performance experiments were done due to the lack of compiler
support. Unat et al. [16] presented a domain-specific OpenMP-like program-
ming model for stencil methods. For small kernels, they realized up to 80% of
the performance of optimized CUDA versions. Our work provides the first study
of the performance and programmability of the OpenMP accelerator model using
the HOMP compiler [12]. OpenACC [4] provides a cache (var list) directive to
support cache memory on accelerators. However, this directive may only appear
inside loops. By contrast, our proposed cache() is a clause which can be used
with one or multiple code regions. Besides leveraging the highest level of cache,
the additional const modifier in our design can support the read-only semantics
to exploit constant memory.

6 Discussion & Future Work

We have found that the OpenMP Accelerator Model is a productive approach
for porting existing applications to GPUs. The porting strategy can be straight-
forward. Users should prepare a baseline OpenMP version running on CPUs.
Then the target directive can be inserted around parallel regions. There are only
a limited set of accelerator directives and clauses in OpenMP 4.0 to improve
parallelism, scheduling, and data reuse, among others. So a strategy is to incre-
mentally apply them and check the effect by performance analysis tools.

However, real applications pose unique challenges to effectively apply directive-
based programming models. 1.) A scientific application often has complex data
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types which may not be supported by the language specifications. A common
workaround is to manually copy a portion of the complex data object into a
variable of a simpler, supported type. 2) An application may have non-perfectly
nested loops, which can be a candidate for collapsing after simple transforma-
tions. One possible way to improve productivity is to extend the collapse(n)
clause to accept a flag, like collapse(n:force), to force collapsing across multiple
non-perfectly nested loops when applicable. Compilers could enforce a transfor-
mation to form a perfectly nested loop, but users have to ensure the correct-
ness of the code movements. 3) Large-scale DOE applications usually leverage
many third-party libraries to increase productivity. Porting such an application
may involve a challenging task to port the underlying libraries. 4) In an ideal
world, users should be able to simply insert directives into existing codes to
port to new platforms. However, non-trivial code restructuring may be needed
to expose the right granularity of parallelism. 5) Our attempt to exploit special
caches on GPUs generated some interesting results. Using constant memory for
LBM resulted in significant performance improvements. On the other hand, us-
ing shared memory for CNS does not deliver higher performance in our study.
The intuitive implementation to exploit special caches on GPUs may degrade
the performance. Additional analysis and optimization support will be helpful
to achieve good performance on GPU devices.

Our future research directions are in the following: 1) testing extensions to
port complex data types and non-canonical control structures (e.g. non-perfectly
nested loops). 2) using more scientific applications to find improvements to the
directive-based programming models, 3) further investigation of ways of exploit-
ing shared memory for better performance in real applications, and 4) exploring
extensions to express semantics related to managing multiple accelerator de-
vices.
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